Skip to contents

All functions

add_residuals()
Calculate randomized quantile residuals for mvgam objects
all_neon_tick_data
NEON Amblyomma and Ixodes tick abundance survey data
augment(<mvgam>)
Augment an mvgam object's data
code() stancode(<mvgam_prefit>) stancode(<mvgam>) standata(<mvgam_prefit>)
Stan code and data objects for mvgam models
conditional_effects(<mvgam>) plot(<mvgam_conditional_effects>) print(<mvgam_conditional_effects>)
Display Conditional Effects of Predictors
dynamic()
Defining dynamic coefficients in mvgam formulae
ensemble()
Combine mvgam forecasts into evenly weighted ensembles
eval_mvgam() roll_eval_mvgam() compare_mvgams()
Evaluate forecasts from fitted mvgam objects
fevd()
Calculate latent VAR forecast error variance decompositions
fitted(<mvgam>)
Expected Values of the Posterior Predictive Distribution
forecast()
Extract or compute hindcasts and forecasts for a fitted mvgam object
formula(<mvgam>) formula(<mvgam_prefit>)
Extract formulae from mvgam objects
get_mvgam_priors()
Extract information on default prior distributions for an mvgam model
GP()
Specify dynamic Gaussian processes
drawDotmvgam() eval_smoothDothilbertDotsmooth() eval_smoothDotmodDotsmooth() eval_smoothDotmoiDotsmooth()
Enhance mvgam post-processing using gratia functionality
hindcast()
Extract hindcasts for a fitted mvgam object
how_to_cite()
Generate a methods description for mvgam models
variables(<mvgam>)
Index mvgam objects
irf()
Calculate latent VAR impulse response functions
jsdgam()
Fit Joint Species Distribution Models in mvgam
lfo_cv()
Approximate leave-future-out cross-validation of fitted mvgam objects
logLik(<mvgam>)
Compute pointwise Log-Likelihoods from fitted mvgam objects
loo(<mvgam>) loo_compare(<mvgam>)
LOO information criteria for mvgam models
lv_correlations()
Calculate trend correlations based on mvgam latent factor loadings
mcmc_plot(<mvgam>)
MCMC plots as implemented in bayesplot
model.frame(<mvgam>) model.frame(<mvgam_prefit>)
Extract model.frame from a fitted mvgam object
smooth.construct(<moi.smooth.spec>) smooth.construct(<mod.smooth.spec>) Predict.matrix(<moi.smooth>) Predict.matrix(<mod.smooth>)
Monotonic splines in mvgam
mvgam-class
Fitted mvgam object description
mvgam()
Fit a Bayesian dynamic GAM to a univariate or multivariate set of time series
nuts_params(<mvgam>) log_posterior(<mvgam>) rhat(<mvgam>) neff_ratio(<mvgam>)
Extract diagnostic quantities of mvgam models
as.data.frame(<mvgam>) as.matrix(<mvgam>) as.array(<mvgam>) as_draws(<mvgam>) as_draws_matrix(<mvgam>) as_draws_df(<mvgam>) as_draws_array(<mvgam>) as_draws_list(<mvgam>) as_draws_rvars(<mvgam>)
Extract posterior draws from fitted mvgam objects
tweedie() student_t() betar() nb() lognormal() student() bernoulli() beta_binomial() nmix()
Supported mvgam families
mvgam_fevd-class
mvgam_fevd object description
mvgam_forecast-class
mvgam_forecast object description
mvgam_formulae
Details of formula specifications in mvgam
mvgam_irf-class
mvgam_irf object description
get_coef(<mvgam>) set_coef(<mvgam>) get_vcov(<mvgam>) get_predict(<mvgam>) get_data(<mvgam>) get_data(<mvgam_prefit>) find_predictors(<mvgam>) find_predictors(<mvgam_prefit>)
Helper functions for mvgam marginaleffects calculations
mvgam_trends
Supported mvgam trend models
pairs(<mvgam>)
Create a matrix of output plots from a mvgam object
PW()
Specify piecewise linear or logistic trends
plot(<mvgam>)
Default mvgam plots
plot(<mvgam_fevd>)
Plot forecast error variance decompositions from an mvgam_fevd object This function takes an mvgam_fevd object and produces a plot of the posterior median contributions to forecast variance for each series in the fitted Vector Autoregression
plot(<mvgam_irf>)
Plot impulse responses from an mvgam_irf object This function takes an mvgam_irf object and produces plots of Impulse Response Functions
plot(<mvgam_lfo>)
Plot Pareto-k and ELPD values from a leave-future-out object
plot_mvgam_factors()
Latent factor summaries for a fitted mvgam object
plot_mvgam_fc() plot(<mvgam_forecast>)
Plot mvgam posterior predictions for a specified series
plot_mvgam_pterms()
Plot mvgam parametric term partial effects
plot_mvgam_randomeffects()
Plot mvgam random effect terms
plot_mvgam_resids()
Residual diagnostics for a fitted mvgam object
plot_mvgam_series()
Plot observed time series used for mvgam modelling
plot_mvgam_smooth()
Plot mvgam smooth terms
plot_mvgam_trend()
Plot mvgam latent trend for a specified series
plot_mvgam_uncertainty()
Plot mvgam forecast uncertainty contributions for a specified series
portal_data
Portal Project rodent capture survey data
posterior_epred(<mvgam>)
Draws from the Expected Value of the Posterior Predictive Distribution
posterior_linpred(<mvgam>)
Posterior Draws of the Linear Predictor
posterior_predict(<mvgam>)
Draws from the Posterior Predictive Distribution
ppc()
Plot mvgam conditional posterior predictive checks for a specified series
pp_check(<mvgam>)
Posterior Predictive Checks for mvgam Objects
predict(<mvgam>)
Predict from the GAM component of an mvgam model
print(<mvgam>)
Summary for a fitted mvgam object
residuals(<mvgam>)
Posterior draws of mvgam residuals
residual_cor()
Extract residual correlations based on latent factors from a fitted jsdgam
RW() AR() CAR() VAR()
Specify autoregressive dynamic processes in mvgam
score()
Compute probabilistic forecast scores for mvgam objects
series_to_mvgam()
This function converts univariate or multivariate time series (xts or ts objects) to the format necessary for mvgam
sim_mvgam()
Simulate a set of time series for mvgam modelling
stability()
Calculate measures of latent VAR community stability
summary(<mvgam>) summary(<mvgam_prefit>) coef(<mvgam>)
Summary for a fitted mvgam object
update(<mvgam>) update(<jsdgam>)
Update an existing mvgam object
ZMVN()
Specify correlated residual processes in mvgam