Function reference
-
add_residuals()
- Calculate randomized quantile residuals for mvgam objects
-
all_neon_tick_data
- NEON Amblyomma and Ixodes tick abundance survey data
-
augment(<mvgam>)
- Augment an mvgam object's data
-
code()
stancode(<mvgam_prefit>)
stancode(<mvgam>)
standata(<mvgam_prefit>)
- Stan code and data objects for mvgam models
-
conditional_effects(<mvgam>)
plot(<mvgam_conditional_effects>)
print(<mvgam_conditional_effects>)
- Display Conditional Effects of Predictors
-
dynamic()
- Defining dynamic coefficients in mvgam formulae
-
ensemble()
- Combine mvgam forecasts into evenly weighted ensembles
-
eval_mvgam()
roll_eval_mvgam()
compare_mvgams()
- Evaluate forecasts from fitted mvgam objects
-
fevd()
- Calculate latent VAR forecast error variance decompositions
-
fitted(<mvgam>)
- Expected Values of the Posterior Predictive Distribution
-
forecast()
- Extract or compute hindcasts and forecasts for a fitted
mvgam
object
-
formula(<mvgam>)
formula(<mvgam_prefit>)
- Extract formulae from mvgam objects
-
get_mvgam_priors()
- Extract information on default prior distributions for an mvgam model
-
GP()
- Specify dynamic Gaussian processes
-
drawDotmvgam()
eval_smoothDothilbertDotsmooth()
eval_smoothDotmodDotsmooth()
eval_smoothDotmoiDotsmooth()
- Enhance mvgam post-processing using gratia functionality
-
hindcast()
- Extract hindcasts for a fitted
mvgam
object
-
how_to_cite()
- Generate a methods description for mvgam models
-
variables(<mvgam>)
- Index
mvgam
objects
-
irf()
- Calculate latent VAR impulse response functions
-
jsdgam()
- Fit Joint Species Distribution Models in mvgam
-
lfo_cv()
- Approximate leave-future-out cross-validation of fitted
mvgam
objects
-
logLik(<mvgam>)
- Compute pointwise Log-Likelihoods from fitted
mvgam
objects
-
loo(<mvgam>)
loo_compare(<mvgam>)
- LOO information criteria for
mvgam
models
-
lv_correlations()
- Calculate trend correlations based on mvgam latent factor loadings
-
mcmc_plot(<mvgam>)
- MCMC plots as implemented in bayesplot
-
model.frame(<mvgam>)
model.frame(<mvgam_prefit>)
- Extract model.frame from a fitted mvgam object
-
smooth.construct(<moi.smooth.spec>)
smooth.construct(<mod.smooth.spec>)
Predict.matrix(<moi.smooth>)
Predict.matrix(<mod.smooth>)
- Monotonic splines in mvgam
-
mvgam-class
- Fitted
mvgam
object description
-
mvgam()
- Fit a Bayesian dynamic GAM to a univariate or multivariate set of time series
-
nuts_params(<mvgam>)
log_posterior(<mvgam>)
rhat(<mvgam>)
neff_ratio(<mvgam>)
- Extract diagnostic quantities of mvgam models
-
as.data.frame(<mvgam>)
as.matrix(<mvgam>)
as.array(<mvgam>)
as_draws(<mvgam>)
as_draws_matrix(<mvgam>)
as_draws_df(<mvgam>)
as_draws_array(<mvgam>)
as_draws_list(<mvgam>)
as_draws_rvars(<mvgam>)
- Extract posterior draws from fitted
mvgam
objects
-
tweedie()
student_t()
betar()
nb()
lognormal()
student()
bernoulli()
beta_binomial()
nmix()
- Supported mvgam families
-
mvgam_fevd-class
mvgam_fevd
object description
-
mvgam_forecast-class
mvgam_forecast
object description
-
mvgam_formulae
- Details of formula specifications in
mvgam
-
mvgam_irf-class
mvgam_irf
object description
-
get_coef(<mvgam>)
set_coef(<mvgam>)
get_vcov(<mvgam>)
get_predict(<mvgam>)
get_data(<mvgam>)
get_data(<mvgam_prefit>)
find_predictors(<mvgam>)
find_predictors(<mvgam_prefit>)
- Helper functions for mvgam marginaleffects calculations
-
mvgam_trends
- Supported mvgam trend models
-
pairs(<mvgam>)
- Create a matrix of output plots from a
mvgam
object
-
PW()
- Specify piecewise linear or logistic trends
-
plot(<mvgam>)
- Default mvgam plots
-
plot(<mvgam_fevd>)
- Plot forecast error variance decompositions from an mvgam_fevd object
This function takes an
mvgam_fevd
object and produces a plot of the posterior median contributions to forecast variance for each series in the fitted Vector Autoregression
-
plot(<mvgam_irf>)
- Plot impulse responses from an mvgam_irf object
This function takes an
mvgam_irf
object and produces plots of Impulse Response Functions
-
plot(<mvgam_lfo>)
- Plot Pareto-k and ELPD values from a leave-future-out object
-
plot_mvgam_factors()
- Latent factor summaries for a fitted mvgam object
-
plot_mvgam_fc()
plot(<mvgam_forecast>)
- Plot mvgam posterior predictions for a specified series
-
plot_mvgam_pterms()
- Plot mvgam parametric term partial effects
-
plot_mvgam_randomeffects()
- Plot mvgam random effect terms
-
plot_mvgam_resids()
- Residual diagnostics for a fitted mvgam object
-
plot_mvgam_series()
- Plot observed time series used for mvgam modelling
-
plot_mvgam_smooth()
- Plot mvgam smooth terms
-
plot_mvgam_trend()
- Plot mvgam latent trend for a specified series
-
plot_mvgam_uncertainty()
- Plot mvgam forecast uncertainty contributions for a specified series
-
portal_data
- Portal Project rodent capture survey data
-
posterior_epred(<mvgam>)
- Draws from the Expected Value of the Posterior Predictive Distribution
-
posterior_linpred(<mvgam>)
- Posterior Draws of the Linear Predictor
-
posterior_predict(<mvgam>)
- Draws from the Posterior Predictive Distribution
-
ppc()
- Plot mvgam conditional posterior predictive checks for a specified series
-
pp_check(<mvgam>)
- Posterior Predictive Checks for
mvgam
Objects
-
predict(<mvgam>)
- Predict from the GAM component of an mvgam model
-
print(<mvgam>)
- Summary for a fitted mvgam object
-
residuals(<mvgam>)
- Posterior draws of
mvgam
residuals
-
residual_cor()
- Extract residual correlations based on latent factors from a fitted jsdgam
-
score()
- Compute probabilistic forecast scores for mvgam objects
-
series_to_mvgam()
- This function converts univariate or multivariate time series (
xts
orts
objects) to the format necessary formvgam
-
sim_mvgam()
- Simulate a set of time series for mvgam modelling
-
stability()
- Calculate measures of latent VAR community stability
-
summary(<mvgam>)
summary(<mvgam_prefit>)
coef(<mvgam>)
- Summary for a fitted mvgam object
-
update(<mvgam>)
update(<jsdgam>)
- Update an existing
mvgam
object
-
ZMVN()
- Specify correlated residual processes in mvgam