
Function reference
-
GP() - Specify dynamic Gaussian process trends in mvgam models
-
ZMVN() - Specify correlated residual processes in mvgam
-
add_residuals() - Calculate randomized quantile residuals for mvgam objects
-
all_neon_tick_data - NEON Amblyomma and Ixodes tick abundance survey data
-
augment(<mvgam>) - Augment an
mvgamobject's data
-
code()stancode(<mvgam_prefit>)stancode(<mvgam>)standata(<mvgam_prefit>) - Stan code and data objects for mvgam models
-
conditional_effects(<mvgam>)plot(<mvgam_conditional_effects>)print(<mvgam_conditional_effects>) - Display conditional effects of predictors for mvgam models
-
dynamic() - Defining dynamic coefficients in mvgam formulae
-
ensemble() - Combine forecasts from mvgam models into evenly weighted ensembles
-
eval_mvgam()roll_eval_mvgam()compare_mvgams() - Evaluate forecasts from fitted mvgam objects
-
fevd() - Calculate latent VAR forecast error variance decompositions
-
fitted(<mvgam>) - Expected values of the posterior predictive distribution for mvgam objects
-
forecast(<mvgam>) - Extract or compute hindcasts and forecasts for a fitted
mvgamobject
-
formula(<mvgam>)formula(<mvgam_prefit>) - Extract formulae from mvgam objects
-
get_mvgam_priors() - Extract information on default prior distributions for an mvgam model
-
drawDotmvgam()eval_smoothDothilbertDotsmooth()eval_smoothDotmodDotsmooth()eval_smoothDotmoiDotsmooth() - Enhance post-processing of mvgam models using gratia functionality
-
hindcast() - Extract hindcasts for a fitted
mvgamobject
-
how_to_cite() - Generate a methods description for mvgam models
-
variables(<mvgam>) - Index
mvgamobjects
-
irf() - Calculate latent VAR impulse response functions
-
jsdgam() - Fit Joint Species Distribution Models in mvgam
-
lfo_cv() - Approximate leave-future-out cross-validation of fitted mvgam objects
-
logLik(<mvgam>) - Compute pointwise Log-Likelihoods from fitted mvgam objects
-
loo(<mvgam>)loo_compare(<mvgam>) - LOO information criteria for mvgam models
-
lv_correlations() - Calculate trend correlations based on latent factor loadings for mvgam models
-
mcmc_plot(<mvgam>) - MCMC plots of mvgam parameters, as implemented in bayesplot
-
model.frame(<mvgam>)model.frame(<mvgam_prefit>) - Extract model.frame from a fitted mvgam object
-
smooth.construct(<moi.smooth.spec>)smooth.construct(<mod.smooth.spec>)Predict.matrix(<moi.smooth>)Predict.matrix(<mod.smooth>) - Monotonic splines in mvgam models
-
mvgam-class - Fitted
mvgamobject description
-
mvgam() - Fit a Bayesian Dynamic GAM to Univariate or Multivariate Time Series
-
nuts_params(<mvgam>)log_posterior(<mvgam>)rhat(<mvgam>)neff_ratio(<mvgam>) - Extract diagnostic quantities of mvgam models
-
as.data.frame(<mvgam>)as.matrix(<mvgam>)as.array(<mvgam>)as_draws(<mvgam>)as_draws_matrix(<mvgam>)as_draws_df(<mvgam>)as_draws_array(<mvgam>)as_draws_list(<mvgam>)as_draws_rvars(<mvgam>) - Extract posterior draws from fitted mvgam objects
-
tweedie()student_t()betar()nb()lognormal()student()bernoulli()beta_binomial()nmix() - Supported mvgam families
-
mvgam_fevd-class mvgam_fevdobject description
-
mvgam_forecast-class mvgam_forecastobject description
-
mvgam_formulae - Details of formula specifications in mvgam models
-
mvgam_irf-class mvgam_irfobject description
-
get_coef(<mvgam>)set_coef(<mvgam>)get_vcov(<mvgam>)get_predict(<mvgam>)get_data(<mvgam>)get_data(<mvgam_prefit>)find_predictors(<mvgam>)find_predictors(<mvgam_prefit>) - Helper functions for marginaleffects calculations in mvgam models
-
mvgam_residcor-class mvgam_residcorobject description
-
mvgam_trends - Supported latent trend models in mvgam
-
mvgam_use_cases - Example use cases for mvgam
-
ordinate() - Latent variable ordination plots from jsdgam objects
-
pairs(<mvgam>) - Create a matrix of output plots from a
mvgamobject
-
PW() - Specify piecewise linear or logistic trends in mvgam models
-
plot(<mvgam>) - Default plots for mvgam models
-
plot(<mvgam_fevd>) - Plot forecast error variance decompositions from an
mvgam_fevdobject
-
plot(<mvgam_irf>) - Plot impulse responses from an
mvgam_irfobject
-
plot(<mvgam_lfo>) - Plot Pareto-k and ELPD values from a
mvgam_lfoobject
-
plot(<mvgam_residcor>) - Plot residual correlations based on latent factors
-
plot_mvgam_factors() - Latent factor summaries for a fitted mvgam object
-
plot_mvgam_fc()plot(<mvgam_forecast>) - Plot posterior forecast predictions from mvgam models
-
plot_mvgam_pterms() - Plot parametric term partial effects for mvgam models
-
plot_mvgam_randomeffects() - Plot random effect terms from mvgam models
-
plot_mvgam_resids() - Residual diagnostics for a fitted mvgam object
-
plot_mvgam_series() - Plot observed time series used for mvgam modelling
-
plot_mvgam_smooth() - Plot smooth terms from mvgam models
-
plot_mvgam_trend() - Plot latent trend predictions from mvgam models
-
plot_mvgam_uncertainty() - Plot forecast uncertainty contributions from mvgam models
-
portal_data - Portal Project rodent capture survey data
-
posterior_epred(<mvgam>) - Draws from the expected value of the posterior predictive distribution for mvgam objects
-
posterior_linpred(<mvgam>) - Posterior draws of the linear predictor for mvgam objects
-
posterior_predict(<mvgam>) - Draws from the posterior predictive distribution for mvgam objects
-
pp_check(<mvgam>) - Posterior Predictive Checks for
mvgammodels
-
ppc() - Plot conditional posterior predictive checks from mvgam models
-
predict(<mvgam>) - Predict from a fitted mvgam model
-
print(<mvgam>) - Print a fitted mvgam object
-
print(<mvgam_summary>) - Print method for mvgam_summary objects
-
residual_cor() - Extract residual correlations based on latent factors
-
residuals(<mvgam>) - Posterior draws of residuals from mvgam models
-
score() - Compute probabilistic forecast scores for mvgam models
-
series_to_mvgam() - Convert timeseries object to format necessary for mvgam models
-
sim_mvgam() - Simulate a set of time series for modelling in mvgam
-
stability() - Calculate measures of latent VAR community stability
-
summary(<mvgam>)summary(<mvgam_prefit>)coef(<mvgam>) - Summary for a fitted mvgam models
-
summary(<mvgam_fevd>) - Posterior summary of forecast error variance decompositions
-
summary(<mvgam_forecast>) - Posterior summary of hindcast and forecast objects
-
summary(<mvgam_irf>) - Posterior summary of impulse responses
-
tidy(<mvgam>) - Tidy an
mvgamobject's parameter posteriors
-
update(<mvgam>)update(<jsdgam>) - Update an existing mvgam model object