Skip to contents

Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by Stan at the back-end of mvgam.

Usage

# S3 method for mvgam
nuts_params(object, pars = NULL, ...)

# S3 method for mvgam
log_posterior(object, ...)

# S3 method for mvgam
rhat(x, pars = NULL, ...)

# S3 method for mvgam
neff_ratio(object, pars = NULL, ...)

Arguments

object, x

A mvgam object.

pars

An optional character vector of parameter names. For nuts_params these will be NUTS sampler parameter names rather than model parameters. If pars is omitted all parameters are included.

...

Arguments passed to individual methods.

Value

The exact form of the output depends on the method.

Details

For more details see bayesplot-extractors.

Examples

# \donttest{
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),
            trend_model = AR(),
            noncentred = TRUE,
            data = simdat$data_train,
            chains = 2)
#> Error in get_mvgam_priors(formula = formula, trend_formula = trend_formula,     data = data, family = family, use_lv = use_lv, n_lv = n_lv,     use_stan = TRUE, trend_model = trend_model, trend_map = trend_map,     drift = drift, knots = knots): object 'silent' not found
np <- nuts_params(mod)
#> Error in nuts_params(mod): object 'mod' not found
head(np)
#> Error in head(np): object 'np' not found

# extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)
#> Error in subset(np, Parameter == "divergent__"): object 'np' not found

head(neff_ratio(mod))
#> Error in neff_ratio(mod): object 'mod' not found
# }