Extract posterior draws in conventional formats as data.frames, matrices, or arrays.
Usage
# S3 method for mvgam
as.data.frame(
x,
row.names = NULL,
optional = TRUE,
variable = "betas",
use_alias = TRUE,
regex = FALSE,
...
)
# S3 method for mvgam
as.matrix(x, variable = "betas", regex = FALSE, use_alias = TRUE, ...)
# S3 method for mvgam
as.array(x, variable = "betas", regex = FALSE, use_alias = TRUE, ...)
# S3 method for mvgam
as_draws(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...
)
# S3 method for mvgam
as_draws_matrix(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...
)
# S3 method for mvgam
as_draws_df(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...
)
# S3 method for mvgam
as_draws_array(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...
)
# S3 method for mvgam
as_draws_list(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...
)
# S3 method for mvgam
as_draws_rvars(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)
Arguments
- x
list
object of classmvgam
- row.names
Ignored
- optional
Ignored
- variable
A character specifying which parameters to extract. Can either be one of the following options:
obs_params
(other parameters specific to the observation model, such as overdispsersions for negative binomial models or observation error SD for gaussian / student-t models)betas
(beta coefficients from the GAM observation model linear predictor; default)smooth_params
(smoothing parameters from the GAM observation model)linpreds
(estimated linear predictors on whatever link scale was used in the model)trend_params
(parameters governing the trend dynamics, such as AR parameters, trend SD parameters or Gaussian Process parameters)trend_betas
(beta coefficients from the GAM latent process model linear predictor; only available if atrend_formula
was supplied in the original model)trend_smooth_params
(process model GAM smoothing parameters; only available if atrend_formula
was supplied in the original model)trend_linpreds
(process model linear predictors on the identity scale; only available if atrend_formula
was supplied in the original model)
OR can be a character vector providing the variables to extract
- use_alias
Logical. If more informative names for parameters are available (i.e. for beta coefficients
b
or for smoothing parametersrho
), replace the uninformative names with the more informative alias. Defaults toTRUE
- regex
Logical. If not using one of the prespecified options for extractions, should
variable
be treated as a (vector of) regular expressions? Any variable in x matching at least one of the regular expressions will be selected. Defaults toFALSE
.- ...
Ignored
- inc_warmup
Should warmup draws be included? Defaults to
FALSE
.
Examples
if (FALSE) {
sim <- sim_mvgam(family = Gamma())
mod1 <- mvgam(y ~ s(season, bs = 'cc'),
trend_model = 'AR1',
data = sim$data_train,
family = Gamma(),
chains = 2,
samples = 300)
beta_draws_df <- as.data.frame(mod1, variable = 'betas')
head(beta_draws_df)
str(beta_draws_df)
beta_draws_mat <- as.matrix(mod1, variable = 'betas')
head(beta_draws_mat)
str(beta_draws_mat)
shape_pars <- as.matrix(mod1, variable = 'shape', regex = TRUE)
head(shape_pars)}