
Compute pointwise Log-Likelihoods from fitted mvgam objects
Source:R/logLik.mvgam.R
logLik.mvgam.RdCompute pointwise Log-Likelihoods from fitted mvgam objects
Usage
# S3 method for mvgam
logLik(object, linpreds, newdata, family_pars, include_forecast = TRUE, ...)Arguments
- object
listobject of classmvgamorjsdgam- linpreds
Optional
matrixof linear predictor draws to use for calculating pointwise log-likelihoods.- newdata
Optional
data.frameorlistobject specifying which series each column inlinpredsbelongs to. Iflinpredsis supplied, thennewdatamust also be supplied.- family_pars
Optional
listcontaining posterior draws of family-specific parameters (i.e. shape, scale or overdispersion parameters). Required iflinpredsandnewdataare supplied.- include_forecast
Logical. If
newdatawere fed to the model to compute forecasts, should the log-likelihood draws for these observations also be returned. Defaults toTRUE.- ...
Ignored
Value
A matrix of dimension n_samples x n_observations containing the
pointwise log-likelihood draws for all observations in newdata. If no
newdata is supplied, log-likelihood draws are returned for all observations
that were originally fed to the model (training observations and, if supplied
to the original model via the newdata argument in mvgam,
testing observations).
Examples
# \donttest{
# Simulate some data and fit a model
simdat <- sim_mvgam(
n_series = 1,
trend_model = AR()
)
mod <- mvgam(
y ~ s(season, bs = 'cc', k = 6),
trend_model = AR(),
data = simdat$data_train,
chains = 2,
silent = 2
)
# Extract log-likelihood values
lls <- logLik(mod)
str(lls)
#> num [1:1000, 1:75] -0.339 -0.375 -0.357 -0.403 -0.312 ...
# }